

Leveraging High Performance Hyperspectral Sensors for the Conservation of Masterworks

NATO SET-277

Dr. Jason G. Zeibel

Deputy Director, Science & Technology Division

CCDC C5ISR Night Vision & Electronic Sensors Directorate

Done in partnership with the US National Gallery of Art

- NVESD Mission Statement
- History of Collaboration with NGA
- Motivation
- Thermal Radiometry
- LWIR Spectral Imaging Examples
- Conclusions
- Thanks & Bibliography

CCDC C5ISR NVESD MISSION

RESEARCH AND DEVELOPMENT IN Advanced Sensors -Military Specific Technology-

- EO/IR Imagers (Focal Plane Arrays, Optics, Real Time Image Processing)
- Tactical Lasers
- Sensor Architectures
- EO/IR System Modeling, Characterization & Specification
- Tactical Augmented Reality
- Countermine/Counter-IED

~ \$150M RESEARCH + DEVELOPMENT + PRODUCIBILITY = TRANSITION OF AFFORDABLE TECHNOLOGY TO SOLDIERS, AND WAR SUPPORT DURING WARTIME

Provide leap-ahead sensor technologies to our Soldiers providing situational understanding in all environments and improving rapid decision-making

So, how did the US Army get involved with Art???

(special thanks to Dr. John Delaney, K. Dooley, others)

NGA COLLABORATION

NVESD's former director (A.F. Milton) was on the board at a number of foundations and provided the introduction and permitted us to use our time on a limited basis.
NVESD has the sensors and NGA & friends have the art!
Some artists worked on thus far: DaVinci, Picasso, Manet, Rothco, Pasellino, Bellini, Matisse, Delacroix, Derain, Bellows, Kirchner, Duccio, Giorgione, Rembrandt, more...
Semi-annual field tests occur at the Gallery (or elsewhere) with

NVESD instruments (subject to mission availability).

The Mauritshuis

The Rijksmuseum

- Diffuse spectroscopy has been used for decades in the reflective bands to examine color, and to study overtones and combination bands of vibrational modes of chemical bonds
- The "Mid-IR" (2.5-25um) is rich in spectral features that allow the specific identification of many chemical functional groups contained in artists' materials such as pigments, binders, fillers, and degradation products
- The Mid-IR has been harder to do in a non-destructive standoff geometry until recent advances in thermal channel HSI instruments.

- Many historical paints are based on ground up minerals with an organic based binder. Both the minerals and binders have observable signatures.
- By observing reflectivity vs. λ in the MWIR & LWIR spectral bands the chemical composition of the pigments and/or binder can be determined non-destructively.

8.1 um to 13.1 um / 1234 cm⁻¹ to 763 cm⁻¹ (~250 images)

Blue=8.96um, Green=9.52um, Red=11.02um

THERMAL SPECTRAL IMAGING

No ϵ left in the equations! Not very useful.

Therefore, we have two (not entirely separated) choices:

- (1) Create a difference between L_{Room} and L_{TGT} (heat the painting or cool the room)
- (2) Apply some directed light source, L_{lamp} . (Turn on a lamp, or take the painting outside...)

Case #2: Painting same T as rest of room, but external illumination applied.

$$L = \tau_{atm} L_{Room} + L_U + (1-\varepsilon)\tau_{atm} L_{Lamp}$$

Since typically $\varepsilon > 0.9$ we get the same ΔL with a small ΔT between painting & room, as with a large emitted flux heat lamp.
But... you can pay a price with image sharpness & MTF, as transient heating effects tend to blur edges & fine detail.

Thermal Imaging Considerations

Tips for Best Reflective Thermal Imaging

- Most paints are highly specular in the MWIR & LWIR. Specular reflection produces a large signal, but tends to be highly non-uniform for point source lighting. A very narrow BRDF leads to hot spots on the target.
- Non-specular illumination is much more uniform, but will need to put lots of light on the target.
- Ideally, what we would want is a large extended Lambertian source with significantly different ∆T than the target. That's easy! Take the painting outside on a clear blue sky day!
- Cold sky on a clear day provides a very effective delta radiance and produces nice images

SO DID WE REALLY TAKE MASTERWORKS OUTSIDE?!?!

Kind of... We took out test panels and a mockup using period appropriate paints.

3 band LWIR Radiance

REFLECTIVE VERSUS EMISSIVE SENSING (RADIANCE SPACE)

Large Planck blackbody spectrum dominates all signals and must be removed before doing any meaningful analysis

Non-uniform spatial illumination from heat lamp creates hot spots and reflections

REFLECTIVE VERSUS EMISSIVE SENSING (RADIANCE SPACE)

Outdoor imaging suffers from spectrally non-uniform illumination due to the many atmospheric absorption lines Looking for small features among a forest of other large spectral features is a challenge.

Inside with Heat Lamp

REFLECTIVE VERSUS EMISSIVE SENSING (AFTER TEMPERATURE / EMISSIVITY SEPARATION)

Inside with Heat Lamp

NEXT STEP: MAKE AN INDOOR COLD SKY

Goal: Image in "emission" mode ($T_{sky} \ll T_{painting}$), but with a Lambertian, cold, & spectrally flat "sky".

SAMPLE INDOOR "COLD SKY" LWIR HSI IMAGERY USING COLD TUNNEL

LWIR SPECTRAL IMAGING RESULTS

(900, 1050, 1200 cm⁻¹)

Emissivity spectra (outdoors=blue, indoors-cold-tunnel=red) from cadmium red paint sites (indicated with corresponding colored arrows Material map & corresponding spectral endmembers of BaSO₄ in oil and alkyd paints (red), silicate in oil and alkyd paints (blue), and silicate in acrylic paints (green).

CORRELATION OF THREE DIFFERENT INSTRUMENTS

Black: sampled with benchtop μFTIR spectrometer Red: contact point FTIR spectrometer Blue: LWIR HSI instrument

EDWARD STEICHEN'S STUDY FOR "LE TOURNESOL"

Color detail of Edward Steichen's *Study for "Le Tournesol (The Sunflower)"* (a); gift of Joanna T. Steichen © Estate of Edward Steichen, and map (b) of the spectral endmembers (c).

IMPROVED INDOOR "COLD SKY"

- Instead of using LN₂ and reflective AI, new version uses a series of eight chilled Thorlabs breadboards with highly emissive paint surfaces affixed on each side.
 - A high capacity chiller pumps refrigerated glycol through all four sides
 - Chilled, dry air passes over each side via laminar flow to prevent frost from forming on walls
 - Reflective enclosure reflects light from target back from around camera lens
- Initial tests show up to 30C delta between high emissivity walls and room temperature target side. This setup also achieves steady state.

- NVESD & NGA have been collaborating on Masterwork spectral imaging for over a decade.
- Investigations using Army spectral cameras have covered many spectral bands and sensing modalities.
- Many publications and presentations have resulted thus far from this collaborative work.
- Much has been learned about significant Masterworks that will aid in the study and conservation of these pieces for future generations.
- New sensors and laboratory equipment now make possible phenomenology investigations in the 'Mid-IR'.

THANK YOU TO SET-240

BIBLIOGRAPHY

- Gabrieli et al., Sci. Adv. 2019; 5 : eaaw7794 23 August 2019
- F. Casadio, L. Toniolo, The analysis of polychrome works of art: 40 years of infrared spectroscopic investigations. *J. Cult. Herit.* 2, 71–78 (2001).
- F. Gabrieli, K. A. Dooley, J. G. Zeibel, J. D. Howe, J. K. Delaney, Standoff mid-infrared emissive imaging spectroscopy for identification and mapping of materials in polychrome objects. *Angew. Chem. Int. Ed.* 57, 7341–7345 (2018).